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Abstract 
The Internet is offering more than just regular Web pages 

to the users. Decision makers can now issue analytical, as 
opposed to transactional, queries that involve massive data 
(such as, aggregations of millions of rows in a relational 
database) in order to identify useful trends and patterns. 
Such queries are referred to as On-Line-Analytical- 
Processing (OLAP) queries. Typically, pages carrying query 
results do not exhibit temporal locality and, therefore, are 
not considered for caching at WWW proxies. In OLAP 
processing, this becomes a major hurdle as the cost of such 
queries is much higher than traditional transactional 
queries. This paper proposes a systematic technique to 
reduce the response time for OLAP queries originating from 
geographically distributed private LANs and issued through 
the Web towards the central data warehouse (OW) of an 
enterprise. An active caching scheme is proposed that 
enables the LAN proxies to cache some parts of the data, 
together with the semantics of the DW in order to process 
queries and construct the resulting pages. OLAP queries 
arriving at the proxy are either satisfied locally or from the 
DU! depending on the relative access costs. We formulate a 
cost model for characterizing the latencies of these queries, 
taking into consideration normal Web access as well as 
analytical processing. We propose a cache admittance and 
replacement algorithm that outperforms a widely accepted 
caching algorithm. 

1 Introduction 
Caching has emerged as a primary technique for coping 

with high latency experienced by end-users in the WWW. 
There are four major locations where caching is performed: 
a) proxy at the front-end of a server farm [5]; b) network 
cache at the end-points of the backbone network [lo]; c) 
LAN proxy [l]; d) browser. Although caching at these 
locations has been shown to significantly reduce the Web 
traffic [2], dynamically generated pages are not cacheable. 
Dynamic pages typically consist of a static part and a 
dynamic part (for example, query results from a database 
with a Web server linked to it). 

On the other hand, the need for decision support systems 
has become of paramount importance in today’s business, 
leading many enterprises to build decision support 
databases called data warehouses (DWs) [I  I]. Decision 
makers issue analytical (as opposed to transactional) 
queries that typically involve aggregations of millions of 
rows in order to identify interesting trends. Such queries are 
often referred to as OLAP (On-Line-Analytical- 
Processing). Users perceive the data of the DW as cells in a 
multidimensional data cube [ 121. Fetching from the DW’s 
sources the parts of the cube needed by queries and 
performing aggregations over them is an extremely time 
consuming task. A common technique to accelerate such 
queries is to precalculate and store some results. Such 
stored fragments are essentially parts of views in relational 
database terms; we will refer to their storage as 

materialization/caching of OLAP views. Most of the past 
work on view selection for materialization is limited to the 
central server. 

The Web provides to geographically distributed clients, 
an easy method to access a central DW. An example is that 
of non-professional international investors who trade stocks 
in stock markets around the world. Since their queries are 
usually ad-hoc and driven by previous results (roll-up, drill- 
down), it is not possible for the data owner to provide a set 
of predefined query templates. Potential applications are not 
limited to the financial sector. Meteorological and 
environmental databases or other scientific information 
sources also have similar requirements. The problem was 
presented in [I41 where the authors proposed a dedicated 
infrastructure of DBMSs that acts as a proxy server for 
OLAP data. 

In this paper we deal with the problem of caching OLAP 
queries posed by ad-hoc, geographically spanned users, 
through their web browsers. Unlike the previous approach, 
however, we employ the existing proxy infrastructure and 
propose a method of caching both Web pages and OLAP 
query results in common proxy servers. Web pages carrying 
OLAP query results, hence abbreviated as WOQPs (Web 
OLAP query pages), are essentially dynamic pages, and are 
normally marked as uncacheable. This is not because their 
content changes frequently but due to the ad-hoc nature of 
OLAP queries (as it is unlikely that exactly the same query 
may be issued in the near future). Therefore, unless the 
caching entity is enhanced with query processing 
capabilities it is impossible to use a cached WOQP in order 
to answer future queries. inquiring a subset of the cached 
results. We propose an active caching framework that 
enables the proxies to answer queries using the views 
cached locally and construct the WOQPs needed to present 
the results in the users’ browsers. For tackling cache 
replacement issues we develop an analytical cost model and 
propose strategies that are experimentally proven to lead to 
high quality solutions. Although active caching has been 
employed before in answering transactional queries [ 191, to 
the best of our knowledge this is the first time that OLAP 
data are considered. The special case of OLAP involves 
unique challenges (for instance the results may vary in size 
by many orders of magnitude) and provides new 
opportunities for optimization (e.g., the interdependencies 
of the views in a lattice). 

The caching entities are assumed to be world spanned 
departmental LAN proxies of the company. This 
assumption is made for the purpose of illustration since a 
significant portion of the Web traffic in such environments 
is expected to be directed towards the central DW. Our work 
is applicable to the other caching points of the network, 
provided that significant amount of traffic towards the DW 
passes through them. The motivating principle is that 
caching/replication under restricted environments 11 83, [21 J 
can considerably decrease the response time perceived by 
end-users. 

The rest of the paper is organized as follows. Section 2 
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Figure 3: Lattice and expanded lattice diagrams for cp, c, b dimensions with 
associated query and view computing costs. 

DW always keeps the topmost view materialized, in order to 
be able to handle all OLAP queries [15]. We follow the 
same policy in the central DW but not in the proxies, since 
the size of the topmost view may be prohibitively large. 

A well studied problem in the database community is 
the view selection under storage and update constraints (see 
Section 6), which can be defined as: given the query 
frequencies and the view sizes, select the set of views to 
materialize so as to minimize the total query cost under 
storage capacity constraints and with respect to an update 
window. The problem is solved with static centralized 
solutions that are inefficient in the Web environment. Our 
approach is fundamentally different since we consider a 
distributed environment where OLAP views are cached 
together with normal Web pages. 
3 System Model 

We consider an environment consisting of an enterprise 
with a central DW located at its headquarters and multiple 
regional departments having their own LANs. Each LAN is 
assumed to be connected to the Internet through a proxy 
server. Clients from the regional departments access the 
Web site of the company and issue OLAP queries as well as 
other Web traffic. The Web server of the company forwards 
the queries to the DW, fetches the results, creates the 
relevant WOQP and sends it back. In general, a WOQP has 
a static part possibly consisting of many files (e.g., HTML 
document, gif images), and a dynamic part consisting of the 
query results. Throughout the paper we treat the static files 
as one composite object and assume that all WOQPs have 
the same static part. This is done without loss of generality, 
since extending the framework to account for different 
static parts is straightforward. 

3.1 Limitations of Existing Caching Schemes 
A brute force approach for caching WOQPs at a client 

proxy is to treat them as static HTML documents, and give 
them an appropriate TTL (time-to-live) value. The main 
drawback of this strategy is that the proxy will be able to 
satisfy a query only if it had been submitted in the past in its 
exact form. For instance, a user request for the projection at 
each year of the volume of products sold between 1996- 
1998 will not be answered, even though the proxy might 
have cached a WOQP referring to the volumes sold between 
1995-1998. Treating WOQPs as normal Web pages will 
also affect the overall system performance when it  comes to 
cache replacement decisions. The majority of replacement 
algorithms proposed in the literature [6], [I31 assume that 
only network latency determines cache miss cost. This is 
not sufficient in our environment, since the processing time 

for answering an OLAP query at the server-side is another 
significant factor. Thus, there is a need for a new cache 
replacement policy that takes into account both delays. 

3.2 The Proposed Caching Policy 
Our aim is to allow WOQP construction at the proxy 

using locally cached views. Active caching [7] was 
proposed in order to allow front-end network proxies to 
dynamically generate pages. A cache applet is kept together 
with the static part of the page and in the presence of a 
request the applet fetches the dynamic data from the 
original site and combines them with the cached static part 
to create the HTML document. The main benefit of this 
approach is that Web page construction is done close to the 
client and network latencies are avoided. We implement a 
similar scheme as follows: 

The first time an OLAP query arrives at the central site, 
it triggers a number of different files to be sent to the client 
proxy: 

A cache applet; 

The WOQP answering the query; 
The static part of the WOQP; 

The view lattice diagram together with the associated 
query costs (Figure 3(a)) and a flag indicating whether 
the view is materialized at the server or not; 
The id of the view used by the server to answer the 
query. 

The proxy forwards the WOQP to the end-user without 
caching it and caches the applet, the lattice diagram and the 
static part of the WOQP. Afterwards, it runs the cache applet 
which is responsible to decide whether to fetch the 
answering view from the server or not. Subsequent queries 
are intercepted and the cache applet is invoked to handle 
them. The applet checks whether the currently cached views 
can answer the query at a cost lower than sending the request 
to the server and selects the minimum cost cached view to do 
so. Then, it combines the query results with the static part of 
the WOQP to create the answering page. In case the views 
currently cached in the proxy can not answer the query, or 
answering the query from the proxy is more costly than 
doing so from the server, the request is forwarded to the Web 
server. The Web server responds with the WOQP carrying 
the results, together with the id of the view used to satisfy the 
query. The WOQP is forwarded to the client without being 
cached and subsequently the applet decides whether to 
download the answering view or not. The alternative of 
sending only the query results to the proxy and constructing 
the WOQP there is not considered in this paper, although the 
model can encapsulate this case as well. We found that 
unless the results are very small (not common in OLAP) the 
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additional overhead of going through two connections to 
reach the client instead of one nullifies any traffic gains. 
Moreover, it is reasonable to assume that WOQP 
construction in the proxy is more expensive than in the Web 
server (when the later operates under normal workload) and, 
therefore, it should only happen when query results are 
computable from the locally cached views which is more 
beneficial than redirecting the request to the Web server. If 
the storage left in the cache is not sufficient to store a newly 
amved object (view or Web page), the proxy decides which 
objects to remove from the cache. In order to do so, it asks 
the cache applet for the benefit values of the cached views. 
The cache applet, the lattice diagram and the static part of the 
WOQPs are never considered in the cache replacement 
phase for possible eviction. They are deleted from the cache 
only when the traffic towards the central DW falls below a 
threshold specified by an administrating entity. 
4 Caching Views 

Deriving an analytical cost model in order to decide 
whether to fetch a view or not is necessary. Furthermore, a 
suitable cache replacement strategy must be developed that 
takes into account both the nature of the normal Web traffic 
and the additional characteristics of OLAP queries. We 
tackle both problems by enhancing the GDSP (Popularity- 
Aware Greedy-Dual-Size) [ 131 algorithm to take into 
account query processing latencies. The resulting algorithm 
is referred to as VEGDSP (View Enhanced GDSP). Similar 
enhancements are applicable to most proxy cache 
replacement algorithms proposed in the literature. Table 1 
summarizes the notation used. 

Table 1: Notation used in the paper 

1 

ViP) 

V;s) 

v“ll 

CCVl“) 

C(VjP’) 

The view of V(’) that can answer Qi with min. cost 

The view of v”) that can answer ei with min. cost 

Tbe view that can answer Qi with minimum cost if all 

views were materialized 

cost for answering query using v:’ view 

cost for answering query using v?’ view 

I 

Symbol I Meaning 
v(P) bet of views cacnea at Y I 

N i  

f ( W i )  

I 
v(I) Set of views materialized at S 1 

Network latency for sending W i  to the proxy 

Frequency of W j  

SWj) 

S ( T )  

Size of Vj 

Average size of queries for V j  

I f W j )  ]Frequency of V I 

I M C ( W i )  ICache miss cost for W i  I 
B ( W , )  Benefit for W, 

B V , )  Benefit for V, 
1 

!system I 

4.1 The VEGDSP Algorithm 
Let W i  denote the ith Web page (either normal page, or 

WOQP), assuming a total ordering of them, s( W ; )  its size 
and f ( W , )  its access frequency. The basic form of 
VEGDSP algorithm computes a benefit value B ( W i )  for 
each page using the following formula: 

B(W;) = f c  Wj). MC( Wj)  
(1 )  

s( W J  
where MC( W j )  stands for the cost of fetching W j  from the 
server in case of a cache miss .  In other words B ( W , )  
represents the per byte cost saved as a result of all accesses 
to W ;  during a certain time period. The access frequency of 
W i  is computed as follows: 

where j denotes the jth reference to W j  , t is the elapsed time 
between j + l t h  and jth access and Tis a constant controlling 
the rate of decay. The intuition behind Equation 2 is to 
reduce past access importance. In our experiments f l  was 
set to 1/2 and T to the total number of requests. VEGDSP 
inherits a dynamic aging mechanism from GDSP, in order 
to avoid cache pollution by previously popular objects. 
Each time a page is requested, its cumulative benefit value 
H( W i )  is computed by summing its benefit B( W ; )  with the 
cumulative benefit L of the last object evicted from cache. 
Below is the basic description of VEGDSP in pseudocode: 

fj+ I(wj) = f , ( W ; ) .  2-”T + 1 (2) 

L=O 
IF ( W i  requested) 

IF ( W i  is cached) 

ELSE WHILE (available space<s( W ; )  ) DO 

Store W ;  

H ( W ; )  = L + B ( W ; )  

L = min(H(W,)J W ,  is cached} 
Evict from cache W ,  : H(W,)  =L 

In order to compute the cost M C ( W j )  various functions 
can be chosen. For instance, by selecting MC( W i )  = 1 V W ,  
the algorithm behaves like LFU. A more suitable metric is 
the latency for fetching an object from the server. Most of 
research papers compute this latency as the summation of 
the time required to setup a connection and the actual 
transfer time. This is clearly not appropriate in case of 
OLAP queries since the miss penalty depends also on the 
query processing time at the central site, which in terms 
depends on which views are already materialized in the 
server. In the sequel we provide a cost model to compute the 
miss and benefit costs for caching views in the proxy. 

4.2 The Cost Model 
Let V be the set of views in an r-dimensional datacube 

(IVl = 2‘). A page W j  that arrives at the proxy is the 
answer for a unique query Q; . In case W i  refers to normal 
Web traffic, Qj = 0.  Let V‘p’ denote the set of views 
currently cached at the proxy and V”) the ones materialized 
at the server. Furthermore, let Vy’ be the view among the 
set V”)  that can answer Qi with minimum cost and Vjp’, 
such a view among set V‘”’. Hence, we refer to the 
corresponding query costs as C(VI”) and C(VIp’) .  
Moreover, let Vr  ’ be the view that would answer Qi with 
the minimum cost if all views were materialized (either at 
the proxy or at the server). In case Q; can not be answered 
by V ‘ p ’ ,  V;“’ = 0 and C(VIp’)  = -. We should notice that 
Qj can always be satisfied by V”) since the topmost view is 
always materialized at the central server. Moreover, if 
Qj=O, then C( VI”’, = C( VIP’) = 0 .  Let C n ( P +  S) be the 
cost (in terms of latency) for establishing a connection 
between the proxy and the server, and Tr(S + P) be the 

H (  W ; )  = L + B(  W i )  
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average transfer rate at which the server sends data to the 
proxy. The network latency Nj , exhibited when fetching Wi 
from the central server is given by: 

s( W;) N; = Cn(P + S) + - Tr(S + P )  
with s ( W j )  = s(w)+s(Qi ) ,  where s(w) denotes the size of 
the static part of the page and s(Qi) the size of the query 
results. 

Finally, we denote the time required to construct W i  
having obtained the results of Qi by FY’ and FI”’, 
depending whether the construction occurs at the server site 
or at the proxy. In case Q; = 0,  FI’) = FIp’ = 0.  The total 
cost M C (  W;) of a cache miss for W; in terms of latency is 
given by: 

MC( W i )  = C( Vy’) + FY’ + N i  (3) 
We should notice that in case W j  comes from normal 

Web traffic Equation 3 is reduced to: 
M C ( W i )  = N; (Q; = 0)  (4) 

Equations 3, 4 define the miss cost for a WOQP and a 
normal Web page, respectively. The benefit and cumulative 
benefit values can then be derived using Equation 1. Under 
our scheme we do not consider caching WOQPs due to the 
ad-hoc nature of OLAP queries. 

Concerning views we can compute directly the benefit 
B( Vi)  of keeping in cache Vi view, by taking the difference 
in total cost for answering the queries before and after a 
possible eviction of V .  from the cache. Let f ( V , )  denote 
the access frequency of  V . . Since there are no direct hits for 
views we use the follow&g alternative to compute f( Vi). 
Whenever a query Q; arrives, the sache applet adapts the 
frequency of V;“ using Equation 2.’ 

Let Ai( V‘“), V‘”) denote the cost for satisfying Qi in the 
whole system (both prox and server). Q; can be answered 
either by V‘”’ or by V”, depending on the relative cost 
difference. Thus, we reach the following equation: 

} ( 5 )  
C( VI”’) + FI”’, 

C( Vy’) + FI”’ + N; 
A,(v‘”’, v‘”’) = min 

Let s ( V j )  be the size of view Vi and s ( 5 )  be the 
average query size for queries with V;“=Vj. Since all 
queries satisfied by the same view incur the same 
processing cost (proportional to the view size), the benefit 
value of Vi can be computed as follows: 

f( V,)[A,,( V‘“’ - { V,}, V‘“’)-A,,( V“’, V‘”’)] 
B ( V j )  = ’“’ ( 6 )  

S ( V j )  

where AV,( V”’, V‘”) stands for the cost of answering at 
the system a query Q; : VY“= V ,  && s ( Q i )  = s( V,) . 
4.3 Deriving the Parameters 

Here we provide details on how to compute the 
parameters of Equations 5, 6. C ( V y ) )  and C(VIp’) are 
computed by finding at the lattice diagram the query costs 
of the corresponding VI”’ and Vy’ views as described in 
Section 2. Computing C( Vy’) is feasible since in each node 
of the cached lattice there is a tag denoting whether the 
view is materialized at the central site or not (m-ut-cs tag). 
A second tag (c-ut_p) shows if it is cached at the proxy. The 
cache applet is responsible for searching the lattice and 
defining the query cost valuesS. It is also responsible for 
updating the c-utg tag whenever a new view is stored or 
deleted. Unless the central site follows a static view 
selection policy, we need to employ a consistency 

+. Frequency counters are maintained in the lattice diagram. 

mechanism in order to keep the m-at-cs tag up to date. 
Periodically, the proxy sends a GET IF MODIFIED SINCE 
request to the central site and gets an updated version of the 
lattice if needed. Naturally, this means that the cache applet 
might use a stale lattice copy at its query processing 
decisions, but the performance impact of that is expected to 
be marginal. 

Calculating s ( F )  values is done by having the proxy 
keeping track of the query result sizes exhibited locally and 
having the central server informing the applet of the result 
sizes for queries satisfied by him. An assumption made in 
our experiments was that the proxy and the central server 
have e ual rocessing capabilities. This, in terms, implies 

is the same, regardless whether it is cached at the proxy or 
at the central site. Estimation of the network latency 
parameters, can be done by keeping statistics of past 
downloads in a per server basis and predict the latency 
exhibited in the future, in a way similar to how RTT 
(Round-Trip-Time) is estimated in the TCP [25]. 

4.4 Cache Admittance of Views in VEGDSP 
Web caching algorithms consider for caching all 

arriving objects. This stems from the fact that Web traffic 
exhibits temporal locality [4]. However, when views come 
in question such approach is inadequate since their size can 
be large, resulting in many objects being evicted from the 
cache in order to free space. To avoid this we decided to 
follow an alternative policy. 

When a view Vi is considered for caching at the proxy, 
its benefit value B(V,) is calculated using Equation 6 and 
consequently its cumulative benefit value H( V,) is defined 
as in Section 4.1. In case that there is not enough storage 
space left to cache V i ,  instead of evicting immediately the 
object with the least cumulative benefit which might still 
not free enough space, we calculate the minimum possible 
aggregated cumulative benefit of a set of objects that if 
deleted from the cache, enough space would be freed. V .  is 
cached only if H( Vi)  is greater than this aggregated vaiue. 
Figure 4 provides a description in pseudocode of the 
complete VEGDSP caching algorithm. 
5 Experimental Evaluation 

that FI 4 - - F ,  P‘P’ and the query cost for a view (Figure 3(a)) 

In this section we present the simulation results. There 
are two scenarios considered for comparison. First, a proxy 
that caches only normal Web pages using the GDSP 
algorithm. Second, a proxy that implements VEGDSP. We 
measured the performance of the two alternatives in terms 
of Cost Saving (CS). CS is defined as: 

WCosr - PCosr 
wcosr 

where WCost is the cost occurred when no proxy is 
available and PCosr the cost of each of the proxy 
implementations. 

5.1 The Workload 
In order to simulate our environment we generated 

representative workloads for both OLAP queries and Web 
requests. For the OLAP queries we employed datasets from 
the TPC-H benchmark [27] and the APB benchmark [20]. 
We used a subset of the TPC-H database schema consisting 
of 14 attributes, while for the APB dataset we used the full 

$. Instead of searching the lattice upon a query arrival, each node in 
the lattice keeps an answering-view field storing the minimum cost 
view that can answer queries referring to the node. This information 
can be maintained efficiently when a new view is added or deleted 
from the cache. 
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L=O 
IF ( Wi requested && Qi = 0 ) /*Normal Web page*/ 

IF ( W i  is cached) 

ELSE WHILE (available space<s( W.) )DO 
H(W,) = L+B(W,)  

L = min{H(Wk) ,H(Vm)JW~Vm are cached) 
Evict object K = (( W, : H (  W,) == L) II (V,, : H(V,) == L)) 

Store Wi 
H( W i )  = L + E (  Wi) 

ELSE IF ( W. requested && 
IF (( VIPf+ 0 ) && (A,(  $'), V@)) == C( V:')) + F?' )) 

# 0 ) /*OLAP query*/ 

Find query results 
Construct and send back Wi 
H(Vj'') = L+B(VI')) 

Send Qi to the central site 
ON ARRIVAL of view-id V:" from the server 

ELSE /* Q, can not be answered by the proxy 
or i t  is more expensive*/ 

temp = available space 
cum-benefit = 0 
evict-list = 0 
WHILE (ternpa(VjS)) ) DO /*calculate the aggregation of cumulative 

benefits for the least costly set of objects 
need to be evicted to free-up space*/ 

L = min{H(Wk),H(V,)IW,, Vm are cached] 
ADD IN evict-list object K = (( W, : H (  W,) == L) II 

temp += s( K) 
cum-benefit += H ( K  

IF (cum-benefit < H (  V y  ) ) 
Evict objects in the evict-list 
Fetch and store Vj"' 
H(Vj"') = L+B(VY)) cumulative benefit*/ 

(Vn : H(V,) == L))  

1 /*Fetch the answering view from 
the server if beneficial*/ 

/*Store Vj") with H(Vj")) 

Figure 4: Pseudocode for VEGDSP 

lema for the dimensions. The size of raw data for TPC 
6M tuples and for APB 1.3M tuples. For the Web tra 

we used a synthetic workload with Zipf distribution for 
popularity of pages and a heavy tail distribution for the page 
size. The average page size was 50K and that was the value 
used also for the static part of WOQP. The total number of 
Web pages was 30,000 and the total number of requests 
100,000. OLAP queries were generated using a uniform 
distribution, i.e., the probability of a query to refer to a node 
in the lattice was equal for all nodes and were afterwards 
combined with the Web traffic randomly again, to form the 
request pattern arriving at the proxy. Query size was also 
selected to follow a uniform distribution to the size of the 
view. 

Since the views materialized at the DW server affect the 
query costs and the caching decisions, we decided to 
employ the VEGDSP at the server side, too. Furthermore 
we allowed the server to cache only 10% of the datacube 
(total size of views) which corresponds for the TPC-H 
dataset to l00M tuples and for the APB to 5.8M tuples. We 
should note here that the only factor that burdens the 
materialization of all the datacube is the storage capacity, 
i.e., we do not take into account update constraints. We 
conducted our experiments in an UltraSparc2 workstation 
running at 200MHz with 256 MB of main memory. The 
trend of the results for both the APB and the TPC-H dataset 
was similar. In the rest of this section we will only present 
the results for the APB dataset, due to lack of space. 

5.2 Results 
Intuitively, caching OLAP data into the proxy server 

pays off when there is a substantial amount of OLAP 
requests. In our first set of experiments, the goal is to 
identify the ratio of OLAP to common Web requests above 
which, VEGDSP is beneficial. In Figure 5(a) we compare 
VEGDSP and GDSP using the APB dataset. The cache size 

is fixed to 10% of the total size of Web pages, the network 
transfer rate is 32KBps and the percentage of non-OLAP 
(i .e.,  Web requests) varies from 50% to 100%. The first 
thing to notice is that VEGDSP outperforms GDSP with the 
differences being more apparent when the percentage of 
OLAP requests is high. When the workload consists of Web 
requests only, VEGDSP acts exactly as GDSP. Observe that 
the performance of GDSP deteriorates when the OLAP 
requests increase. This is due to .the fact that GDSP 
considers only Web requests, therefore the percentage of 
requests that are benefited drops. 

Figure 5(b) shows the results when the cache size is 
50% of the total size of Web pages. While the trend is the 
same, the difference between the two algorithms is smaller. 
By setting the cache to 50% we provide enough space for 
GDSP to achieve almost its maximum performance since 
most of the frequently accessed pages fit in the cache (recall 
that the Web requests follow a Zipf distribution). On the 
other hand, VEGDSP is benefited in a smaller extend by the 
increase to the cache size, since the OLAP requests follow a 
uniform distribution. Note that VEGDSP was not always 
better than GDSP. We recorded some cases, when the 
OLAP requests were around 5% of the workload, where 
VEGDSP was marginally worse. This was more obvious for 
the TPC-H dataset, since it is more skewed. The reason is 
that the cost overhead for transferring views from the data 
warehouse to the proxy is not amortized by answering a 
significant number of queries locally. Nevertheless, in the 
general case our experiments show that there is a threshold 
on the percentage of OLAP traffic, above which caching 
OLAP data provides substantial benefits. In the tested cases 
this threshold was around lo%, which is very promising, 
since in a decision-making environment this value can be 
easily exceeded. 

In the second set of experiments we tested the 
performance of VEGDSP when cache size varies between 
1% and 50% of the total Web page size. The network 
transfer rate was again fixed to 32KBps and the percentage 
of OLAP requests was set to 50% (Figure 6(a)) and 30% 
(Figure 6(b)). The performance for both algorithms 
increases to the available cache size. We observe that 
VEGDSP follows the same trend as GDSP while clearly 
maintaining a lead even for the very modest cases of 1% 
and 5% cache sizes. Another observation is that the 
proportional performance difference of the algorithms 
shrinks as the cache size increases (noted also in Figure 5).  

In the final experiment, we investigated the performance 
of VEGDSP as a function of the transfer rates between the 
proxy and the central DW. VEGDSP was executed for 50%, 
70% and 90% of non-OLAP traffic and the network transfer 
rate varied from 32 KBps to 4 MBps. Figure 7 presents the 
results for cache sizes equal to 10% and 50%. We observe 
that CS decreases as the network transfer rate increases. 
Recall from Section 4 that the decision of whether to satisfy 
a query using the cached views at the proxy or redirecting it 
to the DW, depends on both the processing cost and the 
network cost. Since the DW materializes a substantial part 
of the datacube there is a high probability that the 
processing cost for answering a query at the DW is lower 
than the one at the proxy. With a higher transfer rate more 
queries will be redirected to the DW resulting to lowering 
the gains of the algorithm. Since this behavior is due to 
OLAP traffic, the performance drop is more prominent at 
the VEGDSP-50 case. 

The above results indicate that in the presence of OLAP 
queries traditional Web caching schemes can be inefficient. 
The proposed architecture together with the cache 
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algorithm (VEGDSP) can result in improving the overall 
system performance. 
6 Related Work and Conclusions 

In this paper we considered the problem of minimizing 
the cost of online analytical processing queries issued 
through the Internet. We proposed a novel scheme that 
allows a proxy to reply to OLAP queries without 
necessarily having to access the central DW. An analytical 
cost model is derived to quantify the actual benefits. 
Furthermore, a suitable cache algorithm (VEGDSP) is 
developed that judiciously treats OLAP views and Web 
pages, taking into account different costs involved in each 
case. Results of the simulation studies confirm the 
efficiency of our framework, even when the ratio of OLAP 
queries to normal Web traffic is moderate. 

Related to this paper is previous work on the view 
selection problem [ 121 where the authors proposed a greedy 
algorithm that chooses a near-optimal set of views, given 
the storage capacity constraint and an expected query 
workload. View selection under update constraints was 
studied in [9]. The approximation algorithm achieves in the 
worst case solution quality within 63% of the optimal. In 131 
the search space of the problem is reduced by a heuristic 
that excludes views irrelevant to the most frequent queries. 
[24] describes another method for view selection which is 
based on sorting and has smaller computational overhead 
than [ 121, while ensuring the same lower worst case bound 
provided that the view sizes satisfy certain conditions. In 
[26] the authors study the minimization of both query 
execution and view maintenance costs, under the constraint 
that all queries should be answered from the selected views. 
The above methods aim at solving a resulting optimization 
problem in a static and centralized manner. Even though 
they can be considered for implementing view selection in a 
central site if the query patterns do not change frequently, 

they are not suitable for materializing views in a dynamic 
environment. 

In [15] a method is proposed in order to dynamically 
materialize and maintain fragments of OLAP views with 
respect to both space and time constraints in a DW, while in 
[16] the authors consider a Web server linked to a DBMS 
and tackle the problem of whether to cache views at the 
server, at the DBMS, or compute them on fly. [ 1.51 and [ 161 
are simple caching algorithms that consider views as the 
only objects to be cached. Thus, they can suffer from what 
known as the cache pollution problem, i.e., previously 
popular documents fill in the cache if applied directly to a 
Web environment. A normalized cost caching and 
admission algorithm for DW is presented in [22]. The same 
authors proposed similar caching algorithms for Web 
proxies in 1231, but do not consider OLAP queries. The 
problem of caching OLAP in Web environments is studied 
in [14]. However, that approach is based on a dedicated 
infrastructure of DBMSs which is different from the Web 
proxies. In [19], active caching is employed to store 
database results in proxies, but only transactional (Le., non- 
OLAP) workloads are considered. 

Various Web proxy caching algorithms exist in the 
WWW literature [2], [6], [13], [17], [23], [29]. Our 
approach is applicable in conjunction with these algorithms. 
Here, we use the GDSP algorithm because as established in 
[I31 and in [2], [6] ,  [30] (for previous versions of the 
algorithm), it leads to efficient solutions when Web traffic is 
concerned. Our aim is not to propose a new proxy caching 
algorithm but rather to provide a framework for caching 
OLAP views as well as illustrating and solving the 
problems that rise. We are currently applying our extensions 
to all the main algorithms of the WWW literature to 
compare their performance in our environment. 

Another direction for the future work involves the 
development of efficient update processes. In this paper we 
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used an approach that invalidates all cached copies instead 
of updating the cached views at the proxies. Strategies that 
refresh parts of the cached views and invalidate others will 
most likely lead to better performance. Another possibility 
is to take advantage of the ICP (Internet Cache Protocol) 
[28] and the proxy hierarchies as described in [8] to further 
reduce the query costs. The intuition is that a proxy can 
fetch a view or satisfy a query by forwarding the request to 
a proxy located close to it, instead of sending it to the 
central site. Research in both directions can be based on the 
proposed framework, cost model and the caching algorithm. 
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